
Scaling of physical quantities in TRISTAN-MP

Tristan employs an unconventional system of electromagnetic units. It is best described as a
hybrid between the Gaussian and the rationalized MKSA systems. Following Jackson (1975) the
dynamical Maxwell’s equations in an arbitrary electromagnetic system of units can be written as

∂E
∂t

=
c2

α
∇×B− 4πk1J, (1)

∂B
∂t

= −α∇×E, (2)

where k1 and α are arbitrary constants, and c is the speed of light. For instance, for the Gaussian
system k1 = 1, α = c, and for MKSA k1 = 1/4πε0 and α = 1. In TRISTAN, the convention is
k1 = 1/4π and α = 1. The Maxwell’s equations solved by the code then have the form:

∂ET

∂t
= c2∇×BT − JT , (3)

∂BT

∂t
= −∇×ET , (4)

where subscript T stands for TRISTAN system. Conversion to Gaussian field units (subscript G)
is simple: EG = 4πET , and BG = 4πcBT , where the speed of light is measured in cgs. In the
TRISTAN system of electromagnetic units the Lorentz force has the form: 4πqT (ET + v × BT).
Note, that qT = qG as can be seen from the Poisson equation ∇ ·E = 4πk1ρ.

Suppose we are to discretize the Maxwell’s and Lorentz force equations on a grid with spacing
∆x and timestep ∆t, such that the Courant condition is satisfied: c∆t/∆x = Ĉ. Here, Ĉ < 1 is the
Courant number (usually less than .5 for stability). Normalizing the field in terms of some fiducial
field BT0: ÊT = ET /cBT0, B̂T = BT /BT0, we can write the discretized equations as:

∆[ÊT ]t = Ĉ∆[B̂T ]x −
JT∆t
cBT0

, (5)

∆[B̂T ]t = −Ĉ∆[ÊT ]x, (6)

∆[v̂]t = 4π
qmp
mmp

ĈBT0∆t(ÊT +
v̂

Ĉ
× B̂T ). (7)

Here, ∆[...]t,x is a shorthand for the differencing appropriate for either time advance or curl opera-
tion without the ∆t or ∆x multipliers, e.g. ∆[v̂]t ≡ v̂n+1 − v̂n. Velocity is normalized in terms of
∆x/∆t, and qmp = q̂q0 and mmp = m̂m0 stand for charge and mass of a macroparticle, normalized
in terms of fiducial charge q0 and mass m0 (to be determined later).

In order to understand the scaling of quantities in TRISTAN we need to write out the ex-
pression for current density. Each macroparticle in the code is a cube of volume ∆x3, and the
charge crossing the boundary between two cells in a timestep is calculated as a fraction of the
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volume of macroparticle that has moved through the boundary. Thus, J∆t = q̂q0/∆x3v∆t =
q̂q0/∆x3∆l̂∆x = q̂∆l̂q0/∆x2. Here, ∆l̂ is the displacement of the particle in one timestep normal-
ized in units of ∆x. The units in the code are selected in such a way that the following relations
hold:

4π
q0

m0
ĈBT0∆t = 1, (8)

q0

∆x2cBT0
= 1. (9)

This way the equations in the code appear as if ∆t = ∆x = c = q0 = m0 = BT0 = 1. From
relations (8-9) we can write ωc0∆t = 1/Ĉ and ωp0∆t = 1, where ωc0 ≡ 4πq0BT0/m0 = q0BG0/(m0c)
and ω2

p0 = 4πq2
0/(∆x

3m0) are fiducial cyclotron and plasma frequencies. By utilizing the Courant
condition we can write an interesting constraint ∆x = 4π(q2

0/m0)(Ĉ/c)2, which allows us to find
the charge and mass scalings for the macroparticles. Suppose each macroparticle represents N
electrons. Then, ∆x = 4πN(q2

e/me)(Ĉ/c)2 = 4πNĈ2re, where re = 2.8 × 10−13cm is the classical
electron radius, and each macroparticle “contains” q̂N = q̂ ∆x

4πĈ2re
electrons or positrons. Ions can

be selected by specifying m̂ > 1. Note, that independently of N , q0
m0

= q̂
m̂

qe
me

.

The field scaling is found from (8) by utilizing the charge/mass scalings above:

BT0 =
1

(4π)2N

m2
ec

3

q3
e Ĉ

4
=

1
4π

mec

qeĈ2∆x
(10)

In Gaussian units, the fiducial field is

BG0 = 4πcBT0 =
1
Ĉ2

qe
re∆x

(11)

Therefore, in order to convert from the normalized code field quantities (denoted with a hat)
to the Gaussian system, we use:

BG = B̂
qe

Ĉ2re∆x
=

B̂

Ĉ2

1.7× 103cm
∆x(cm)

Gauss (12)

EG = 4πcÊBG0 =
Ê

Ĉ2

1.7× 103cm
∆x(cm)

statvolt/cm (13)

qG = q̂
[ ∆xqe

4πĈ2re

]
=

q̂

Ĉ2
136.4∆x(cm)statcoul (14)

The plasma and cyclotron frequencies can be determined from

Ωc =
q̂B̂

m̂Ĉ

1
∆t

=
q̂B̂

m̂Ĉ2

( c

∆x

)
(15)

ωp =

√
q̂2Np/c

m̂

1
∆t

=

√
q̂2Np/c

m̂Ĉ2

( c

∆x

)
(16)
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Here, Np/c is the number of macroparticles per cell. Let’s go through the standard derivation of
the plasma frequency to show how the TRISTAN system of units works. The normalized equation
of motion for the particle that is solved by the code is: ∆[v̂]t = q̂

m̂(ÊT + v̂
Ĉ
× B̂T ) Imagine

charge separation in a plasma with density of Np/c macroparticles per cell. After displacement x
of positive charges relative to the negative charges, the column density of charge accumulated is
just σ = q̂Np/cx. Since ∇ · ET = ρ, we get for the electric field between two planes of charge:
ÊT = σ, after integrating over a Gaussian pillbox. Substituting this into the equation of motion
(and ignoring the magnetic field) we get for the plasma frequency of oscillation: ω2

p = q̂2Np/c

m̂ . Note,
that since ∆t = 1 in the code, this quantity can be interpreted as ω2

p∆t
2. In order to get the

relativistic quantities, factors of γ should be added accordingly. The scaling (12-14) is peculiar
in the sense that scaling of all quantities depends on the physical size of the grid spacing. When
we change the resolution of the simulation, we need to make sure that code field quantities are
adjusted consistently. Once the grid spacing in physical units is chosen, the effective timestep of
the simulation is set by the Courant number. It acts as if we are changing the speed of light in the
code.


